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Abstract

A notion of splines is introduced on a quantum graph�. It is shown that eigen values of a Hamiltonian
on a finite graph� can be determined as limits of eigenvalues of certain finite-dimensional operators in
spaces of polynomial splines on�. In particular, a bounded set of eigenvalues can be determined using
a space of such polynomial splines with a fixed set of singularities. It is also shown that corresponding
eigenfunctions can be reconstructed as uniform limits of the same polynomial splines with appropriate
fixed set of singularities.
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1. Introduction

In 1943 Courant [4] suggested to use piecewise linear functions to define the subspaces
of approximate trial functions for the Rayleigh–Ritz method for Sturm–Liouville boundary
value problems. This idea was later developed in [1,2,5,19].

The goal of our article is to develop the same approach for second-order Hamiltonians
on quantum graphs. Our generalization goes along the following lines.
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(1) Using a self-adjoint Hamiltonian on a quantum graph� and a set of nodesxj ∈ � we
introduce the notion of variational splines on�. Since we consider a Hamiltonian which
acts on each edge as a second derivative we obtain piecewise polynomial functions.

(2) We show that eigenfunctions whose eigenvalues are not greater than a fixed number
� can be reconstructed as uniform limits of polynomial splines for appropriatefixedset of
nodes.

(3) We show that a bounded set of eigenvalues can be determined using a space of
polynomial splines with a fixed set of nodes.

Quantum graphs found numerous applications in physics, chemistry, engineering and
quantum computing. They serve as models in many situations when one deals with waves
that propagate in “thin’’ media. Many results and references on the analysis on quantum
graphs can be found in[6,9–13,17,18]. In particular in [18] Solomyak considered approx-
imations by piecewise constant functions (≡splines of order zero) on metric trees with
applications to embedding theorems.

By a quantum graph we understand (see [12]) a pair(�,�), where� is a metric graph
and� is a Hamiltonian on�, which acts on each edge as the second derivative and whose
domain is described in terms of the Neumann(Kirchhoff) compatibility conditions at ver-
tices, which link the edges together. The general theory of Hamiltonians on quantum graphs
was developed by Kostrykin and Schrader [10]. Many basic notions and results concerning
quantum graphs and their spectra were summarized by Kuchment in [12].

A metric graph� is a set of verticesV = {vi} and edgesE = {ei} each of length
|ei | ∈ (0,∞]. We identify every edgeewith a segment[0, |e|] of R1 and use coordinatexe
along it. We consider graphs with finite number of edges of finite length. Graph� can be
equipped with a natural metric and the Lebesgue measuredx. The spaceL2(�) is defined
as the direct sum of spacesL2(e), e ∈ E, with the scalar product

〈f, g〉 =
∑
e∈E

∫
e

f g dx, f, g ∈ L2(�) (1.1)

and the norm

‖f ‖L2(�) =
(∑

e∈E

∫
e

|f |2 dx
)1/2

. (1.2)

We introduce a self-adjoint operator� (a Hamiltonian) in the spaceL2(�) which acts on
each edge as the negative second derivative. The precise definition of this operator is given
in the Definition 2. We also give (following[12]) the description of this operator in terms
of its quadratic form.

Using the Hamiltonian� we introduce the Sobolev spaceH 2k(�), k ∈ N, as the domain
of thekth power of the self-adjoint operator� with the graph norm

‖f ‖H2k(�) =
{∑

e∈E

∫
e

(
|f |2 +

∣∣∣∣d2kf

dx2k

∣∣∣∣
2
)
dx

}1/2

. (1.3)

This definition depends on our particular operator and in general[12] on a quantum graph
there is no a natural definition of Sobolev spaces of order higher than one.
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We will use the notationE�(�) for the linear span of all eigenfunctions of the Hamiltonian
� whose corresponding eigenvalues are not greater than a positive�. It is clear that for any
functionf from this setE�(�) the following Bernstein inequality holds true

‖�kf ‖L2(�)��k‖f ‖L2(�),

for anyk ∈ N.

Definition 1. Given two numbers

0 < ���� min
e∈E |e|,

we say that a setI�,� of open and pairwise disjoint intervalsIj is an admissible(�,�)-cover
of � if:
(1) for everyj

�� |Ij |��;
(2) the union of open intervalsIj does not contain vertices of�;
(3) closures of the intervalsIj cover the graph�.

An (�,�)-latticeX�,� is a set of points{xj } where everyxj belongs to an open interval
Ij from an admissible(�,�)-coverI�,�.

Note that the second condition implies that every intervalIj belongs to the interior of an
edge.

The Theorem 3.5 says that there are two absolute constantsC1 > 0, C2 > 0, such that for
any(�,�)-latticeX�,� the following inequality holds true for allm = 2l , l = 0, 1, . . . , f ∈
H 2m(�)

‖f ‖L2(�)�C1m�1/2


∑

j

|f (xj )|2



1/2

+ C2

(
8�2

)m ‖�mf ‖L2(�). (1.4)

Using this inequality one can show that the norm of the Sobolev spaceH 2m(�), is
equivalent to the norm


∑
j

|f (xj )|2 + ‖�mf ‖2
L2(�)




1/2

. (1.5)

Given an(�,�)-latticeX�,� = {xj }, and a sequence of complex numbers{uj }we consider
the following variational problem:

Find a functionw from the spaceH 2k(�), k ∈ N, which has the following properties:
(1) w(xj ) = uj ,
(2) wminimizes functional

w → ‖�kw‖. (1.6)
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We show that this problem has a unique solution.
For a fixed(�,�)-latticeX�,� the set of all solutions of the corresponding variational

problem for different sequences will be denoted asSk(X�,�). The elements of the space
Sk(X�,�) are called splines.

For an(�,�)-latticeX�,� and a functionf ∈ H 2k(�), k ∈ N, the solution of the above
variational problem that interpolatesf on the setX�,� will be denoted bysk(f ). In fact, the
functionsk(f ) ∈ Sk(X�,�) depends on the setX�,�, but we hope our notation will not cause
any confusion.

A Lagrangian splineLk
i ∈ Sk(X�,�) is a minimizer of (1.6) such that

Lk
i (xj ) = �ij , xj ∈ X�,�.

We prove that a functionw ∈ H 2k(�) is a solution to the Variational Problem if and only
if
(1) w(xj ) = uj ,
(2) w is orthogonal with respect to the inner product

〈�kf,�kg〉L2(�) +
∑
j

f (xj )g(xj ) (1.7)

to the subspace of all functionsf from the spaceH 2k(�) for whichf (xj ) = 0 for all j.
We introduce notation

�0 = � \ V,

whereV is the set of vertices of�. It is clear that the set�0 \X�,� is a union of open disjoint
intervalsJj :

�0 \ X�,� =
⋃
j

Jj . (1.8)

It is also shown (Corollary 4.1) that every solution to theVariational Problem is a polynomial
of degree< 4k on every open intervalJj .

As it was already mentioned, Solomyak considered in[18] approximations by piecewise
constant functions (≡splines of order zero) on metric trees. In his situation with piece-
wise functions the question about the conditions at vertices did not arise and in this sense
piecewise functions reflect a graph structure in a very weak form.

In our case of splines of higher degree the conditions at vertices are involved in a much
stronger form. Indeed, even the fact that a spline belongs to a certain spaceH 2k(�) implies
in particular the following: (1) the spline hasL2 derivatives up to the order 4k on each edge;
(2) the spline itself and all its even derivatives up to the order 4k − 2 are continuous on�;
(3) all its odd derivatives satisfy Neumann(Kirchhoff) conditions.

In the Theorem 4.4 we show that every function from the spaceE�(�) is a limit of
polynomial splines. Namely, there exists an absolute constantc > 0 such that for every
(�,�)-latticeX�,� = {xj } with

� < (c�)−1/2,
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the following holds true
(1) every functionf ∈ E�(�) is uniquely determined by the set of numbers{f (xj )};
(2) every such functionf can be reconstructed as a limit whenl → ∞ of the interpolating

spline functionss2l (f )

‖f − s2l (f )‖��2l‖f ‖, l = 0, 1, . . . ,

and

sup
x∈�

|f (x) − sk(f )(x)|��
(
c�2�

)k−1 ‖f ‖, k = 2l + 1, l = 0, 1, . . . ,

where� = c�2� < 1.
Let 0 < �1��2� · · · ��j be the sequence of the firstj eigenvalues of the operator�

in L2(�) counted with their multiplicities and�1,�2, . . . ,�j is the corresponding set of
orthonormal eigenfunctions.

For a fixedj ∈ N, and ak > j we introduce the number�(k)
j (X�,�) by the formula

�(k)
j (X�,�) = inf

F⊂Sk(X�,�)
sup
f∈F

‖�1/2f ‖2

‖f ‖2 , f �= 0, (1.9)

where inf is taken over allj-dimensional subspacesF of Sk(X�,�) ⊂ H 2k(�).

As a consequence of the min-max principle we obtain that the numbers�(k)
j (X�,�) are

the eigenvalues of the matrixD(k) = D(k)(X�,�) with entries

d
(k)
i,j =

∫
�
(�Lk

i )L
k
j dx. (1.10)

Now we can formulate our main result which shows that eigenvalues of matricesD(k)

approximate eigenvalues of the Hamiltonian� operator and the rate of convergence is
exponential.

Namely, the Theorem 5.1 says that there exists an absolutec > 0 such that for any given
� > 0 if 0 < � < (c�)−1/2 then for every(�,�)-latticeX�,�, every eigenvalue�j �� and
all k = 2l + 1, l = 0, 1, . . . ,

�(k)
j (X�,�) − �2�2(k−1)��j ��(k)

j (X�,�), (1.11)

where� = c�2� < 1.
The inequality (1.11) shows that there are three different ways to determine eigenvalues

�j .
(1) Eigenvalues from the interval[0,�] can be determined by keeping a latticeX�,� with

0 < � < (c�)−1/2 fixed and by lettingk go to infinity.
(2) By letting� go to zero and keepingk fixed one can determine all of the eigenvalues.
(3) The convergence will be even faster if� goes to zero and at the same timek goes to

infinity.
The similar results in the case of compact Riemannian manifolds were published in[16].
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2. Quantum graphs

As we already said we consider a quantum graph which is a pair of a metric graph� and
a self-adjoint operator� on it. We assume that the graph has finite number of edges and
every edge has a finite length.

Graph� can be equipped with a natural metric and the Lebesgue measuredx and we
consider the corresponding spaceL2(�) as in (1.2).

The Sobolev spaceH 1(�) consists of all continuous functions on� that belong toH 1(e)

on every edge and we will always use the following norms

‖f ‖H1(e) =
(∫

e

(
|f |2 +

∣∣∣∣dfdx
∣∣∣∣
2
)
dx

)1/2

, (2.1)

and

‖f ‖H1(�) =
(∑

e∈E

∫
e

(
|f |2 +

∣∣∣∣dfdx
∣∣∣∣
2
)
dx

)1/2

. (2.2)

The continuity assumption means that for every vertexv and any two edgese1, e2 con-
tainingv the following boundary condition holds true

lim
x→v,x∈e1

f (x) = lim
x→v,x∈e2

f (x) = f (v). (2.3)

There are many ways to introduce a self-adjoint operator on� which is called a Hamil-
tonian. The following definition gives a precise description of the operator we are dealing
with.

Definition 2. The Hamiltonian� is defined by the formula

− d2

dx2 (2.4)

on each edgee ∈ E and its domainD(�) consists of all functionsf from L2(�) such that
(1) f belongs to the Sobolev spaceH 2(e) on each edgee ∈ �, (2) f is continuous on�, (3)
at every vertexv of degreed everyf ∈ D(�) satisfies the so called Neumann (Kirchhoff)
conditions∑

e∈Ev

df

dx
(v) = 0, (2.5)

whereEv is the set of all edges containingv as a vertex and the derivatives are taken in the
directions away from the vertex.

The operator� is a self-adjoint positive definite operator and we introduce the scale of
Sobolev spacesH 2k(�) associated with the Hamiltonian� as the domains of the powers
�k with the graph norm (1.3).
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The operator� can also be described in terms of its quadratic form. Namely, consider
the positive definite quadratic form which is given as

∑
e∈E

∫
e

∣∣∣∣dfdx
∣∣∣∣
2

dx

and whose domain isH 1(�). The simple inequality

|f (0)|�
(

2

ε
‖f ‖2

L2(0,1) + ε

∥∥∥∥dfdx
∥∥∥∥

2

L2(0,1)

)2

, f ∈ L2(0, 1), 0 < ε�1,

implies that our quadratic form is closed. According to the general theory of quadratic
forms[3], every closed positive definite quadratic form generates a unique positive definite
self-adjoint operator. In our case this operator is exactly the Hamiltonian� defined in the
Definition 2. It follows from a general result in [10,12].

In the case of a finite graph� the spectrum of the Hamiltonian� is discrete, non-
negative and goes to infinity. We will use the notationE�(�) for the linear span of all
eigenfunctions of the Hamiltonian� whose corresponding eigenvalues are not greater than a
positive�.

3. Poincare-type inequalities on�

The following two lemmas can be easily proved by using elementary calculus.

Lemma 3.1. For any intervalIj such that
∣∣Ij ∣∣ �� and for anyxj ∈ Ij the following

inequality holds true

‖f − f (xj )‖L2(Ij )��

∥∥∥∥dfdx
∥∥∥∥
L2(Ij )

, (3.1)

for anyf ∈ H 1(Ij ).

Lemma 3.2. For any (�,�)-latticeX�,� = {xj } there exists a constantC(�,�) such that
for anyf ∈ H 1(�), the following inequality holds


∑

j

|f (xj )|2



1/2

�C(�,�)‖f ‖H1(�). (3.2)

The inequality which is given in the next Theorem can be called the global Poincare
inequality on�.
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Theorem 3.3. There exists an absolute constant C such that for any(�,�)-latticeX�,� =
{xj } the following inequality holds true

‖f ‖L2(�)�C


�1/2


∑

j

|f (xj )|2



1/2

+ �‖�1/2f ‖L2(�)


 , (3.3)

for all f ∈ H 1(�).

Proof. To prove this Theorem it is enough to use the inequalities (3.1), (3.2) and to observe
(see[3]) that since the positive closed quadratic form

∑
e∈E

∫
e

∣∣∣∣dfdx
∣∣∣∣
2

dx

with the domain consisting of all functions fromH 1(�) generates the self-adjoint operator
�, the domain of the positive square root�1/2 is exactly the domain of the corresponding
form (see also[10,12]) and

‖�1/2f ‖2 =
∑
e∈E

∫
e

∣∣∣∣dfdx
∣∣∣∣
2

dx. �

Although the proof of the following Lemma was already given in our previous papers
(for example in[14,15]), we include it for completeness.

Lemma 3.4. If S is a self-adjoint operator in a Hilbert space and for some f from the
domain of S

‖f ‖�A + a‖Sf ‖, a > 0

then for allm = 2l , l = 0, 1,2, . . .

‖f ‖�mA + 8m−1am‖Smf ‖
as long as f belongs to the domain ofSm.
Moreover, ifA = 0 then for any nonnegative r and everym = 2l1 �r, l1 = 0, 1, . . . there

exists a positive constantb(r,m) such that for alln = 2l2, l2 = 0, 1,2, . . .,

‖Srf ‖�(b(r,m)a(m−r))n‖Sn(m−r)+rf ‖ (3.4)

as long as f belongs to the domain ofSn(m−r)+r .

Proof. Because operatorS is self-adjoint we have the following Laplace transform repre-
sentations for the resolvents ofiSand−iS

(�I − iS)−1f =
∫ ∞

0
exp(−�t) exp(itS)f dt,
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(�I + iS)−1f =
∫ ∞

0
exp(−�t) exp(−itS)f dt,

for any� > 0. It implies for any� > 0

‖(I + iεS)−1‖�1

and the same for the operator(I − iεS). Then

‖f ‖�‖(I + εS)f ‖
and the same for the operator(I − εS). It gives

ε‖Sf ‖�‖(I − εS)f ‖ + ‖f ‖�‖(I + ε2S2)f ‖ + ‖f ‖�ε2‖S2f ‖ + 2‖f ‖.
Thus for every self-adjoint operatorSwe have the following inequality for anyf from the

domain ofS2

‖Sf ‖�ε‖S2f ‖ + 2/ε‖f ‖, ε > 0. (3.5)

Now, our inequality (2.20) is true form = 1. If it is true form then applying (2.22) to the
self-adjoint operatorSm we obtain

‖f ‖�mA + 8m−1am(ε‖S2mf ‖ + 2/ε‖f ‖).
Settingε = 8m−1(a)m22, we obtain

‖f ‖�2mA + 82m−1(a)2m‖S2mf ‖.
So the first part of the lemma is proved.
In particular the last inequality implies forA = 0

‖f ‖�(8a)m‖Smf ‖, m = 2l , l = 0, 1, . . . . (3.6)

Next, since

‖Srf ‖�c(m, r)‖Smf ‖r/m‖f ‖1−r/m, 0�r�m

we have

‖Srf ‖�c(m, r)(8a)m−r‖Smf ‖, m = 2l , l = 0, 1, . . . , 0�r�m.

Forg = Srf it gives

‖g‖�c(m, r)(8a)m−r‖Sm−rg‖
and then by (3.6)

‖g‖�(b(m, r)am−r )n‖Sn(m−r)g‖, m = 2l1, n = 2l2,

where constantb is of the form

b(m, r) = c(m, r)8m−r+1.

In other words with the sameb as above we have

‖Srf ‖�(bam−r )n‖Sn(m−r)+rf ‖, m = 2l1, n = 2l2, l1, l2 = 0, 1, . . . . �
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Theorem 3.5. There are two absolute constantsC1 > 0, C2 > 0, such that for any
(�,�)-latticeX�,� the following inequality holds true for allm = 2l , l = 0, 1, . . . , f ∈
H 2m(�)

‖f ‖L2(�)�C1m�1/2


∑

j

|f (xj )|2



1/2

+ C2

(
8�2

)m ‖�mf ‖L2(�). (3.7)

In particular, the norm of the Sobolev spaceH 2m(�),m = 2l , l = 0, 1, . . ., is equivalent
to the norm

∑
j

|f (xj )|2



1/2

+ ‖�mf ‖2
L2(�). (3.8)

Proof. An application of the Theorem 3.3 along with the Lemma 3.4 gives that there are
C1 > 0, c2 > 0, such that the following inequality holds true

‖f ‖L2(�)�C1�
1/2


∑

j

|f (xj )|2



1/2

+ c2�
2‖�f ‖L2(�), (3.9)

wheref ∈ H 2(�). Another application of the Lemma 3.4 gives that there exists a constant
C2 > 0 such that for anym = 2l , l = 0, 1, . . . the following inequality holds

‖f ‖L2(�)�C1m�1/2


∑

j

|f (xj )|2



1/2

+ C2(8�)2m‖�mf ‖L2(�). (3.10)

Thus the first part of the Theorem is proved.
If we will add the term‖�mf ‖L2(�) to each side of the last inequality we will have for a

constantC > 0

‖f ‖H2m(�)�C




∑

j

|f (xj )|2



1/2

+ ‖�mf ‖L2(�)


 . (3.11)

The second part of the Theorem is a consequence of this inequality, the Lemma 3.2, and the
interpolation inequality for self-adjoint operators. The Theorem is
proved. �

4. Polynomial splines

Let us recall that the spaceH 2k(�), k ∈ N, is defined as the domain of the Hamiltonian
�2k with the graph norm (1.3). Given an(�,�)-lattice X�,� = {xj } and a sequence of
complex numbersu = {uj }, we consider the following variational problem.
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Variational problem: Find a functionw from the spaceH 2k(�), k ∈ N, which has the
following properties:

(1) w(xj ) = uj ,
(2) w minimizes functional

w → ‖�kw‖L2(�). (4.1)

It is clear that for a fixed sequenceu = {uj } the minimum of the functional (4.1) is the
same as the minimum of the functional

w →

∑

j

|uj |2



1/2

+ ‖�kw‖L2(�).

and according to the Theorem 3.5 this last expression is equivalent to the Sobolev norm of
w.

We show that this Variational Problem has a unique solution.

Theorem 4.1. The Variational Problem has a unique solution for any sequence of values
u = {uj } and anyk ∈ N.

Proof. By the Theorem 3.5 for any(�,�)-latticeX�,� = {xj } the graph norm of the Sobolev
spaceH 2k(�) is equivalent to the norm

‖�kf ‖2
L2(�) +

∑
j

|f (xj )|2



1/2

. (4.2)

Consider the setU0
2k ⊂ H 2k(�), k ∈ N, of all functions fromH 2k(�) such thatf (xj ) =

0 for everyj and for the given sequenceu = {uj } introduce an affine subspace

U2k(u), k ∈ N,

of all functionsf from H 2k(�) such thatf (xj ) = uj .
It is clear that on this affine subspace the minimum of the functional (4.1) is the same as

the minimum of the functional (4.2) which is equivalent to the norm. It gives the following
solution to the Variational Problem. Take a functiong in U2k(u) and let the functionh be
its orthogonal projection on the spaceU0

2k with respect to the inner product

〈�kf,�kg〉L2(�) +
∑
j

f (xj )g(xj ). (4.3)

Then the functionw = g − h is the unique solution to the Variational Problem.�

For a fixed(�,�)-latticeX�,� the set of all solutions of the corresponding variational
problem for different sequences will be denoted asSk(X�,�). The elements of the space
Sk(X�,�) are called splines.

The proof of the Theorem 4.1 implies the following result.
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Theorem 4.2. A functionw ∈ H 2k(�) is a solution to theVariational Problem if and only if
it is orthogonal with respect to the inner product(4.3)to the subspaceU0

2k andw(xj ) = uj .

The Theorem 4.2 has important consequences. Let us use the notation

�0 = � \ V,

whereV is the set of vertices of�. If Ij form an admissible(�,�)-cover of� andX�,� =
{xj }, xj ∈ Ij is an(�,�)-lattice then is clear that the set�0\X�,� is a union of open disjoint
intervalsJj :

�0 \ X�,� =
⋃
j

Jj . (4.4)

Corollary 4.1. Every solution to the Variational Problem is a polynomial of degree< 4k
on every open intervalJj from (4.4).

The proof is obvious.
Another consequence of the Theorem 4.2 is the fact that the set of all solutions of The

Variational Problem (with a fixedk and fixed set of nodes) is linear. In particular, every
solutionw of 1)-2) can be written as a linear combination

w =
∑
j

ujL
k
j , (4.5)

whereLk
j ∈ Sk(X�,�) ⊂ H 2k(�), are Lagrangian splines.

Our next goal is to prove an Approximation Theorem. For a given functionf ∈ H 2k(�)

the corresponding interpolating spline is

sk(f ) =
∑
j

f (xj )L
k
j ,

whereLk
j is a Lagrangian spline. The functionsk(f ) interpolatesf in the sense that for all

j

f (xj ) = sk(f )(xj ).

By the inequality (3.7) we have

‖(f − sk(f ))‖L2(�)�
(
64�2

)m ‖�m
(f − s2k(f )) ‖L2(�), m = 2l , l = 0, 1, . . . ,

wheref ∈ H 2m(�), k�2m.
If k = m, then by using the minimization property of splines we obtain

‖f − sk(f )‖L2(�)�
(
64�2

)k ‖�kf ‖L2(�), k = 2l , l = 0, 1, . . . . (4.6)

Thus, we have the following approximation result.



I. Pesenson / Journal of Approximation Theory 135 (2005) 203–220 215

Theorem 4.3. For anyf ∈ H 2l (�), l = 0, 1, . . . , the following inequality holds true

‖f − sk(f )‖L2(�)�(64�2)k‖�kf ‖L2(�), k = 2l , l = 0, 1, . . . .

Moreover,we have the following estimates in the uniform norm on the graph

sup
x∈�

|(f (x) − sk(f )(x))|�
(
c�2

)k−1 ‖�kf ‖L2(�),

k = 2l + 1, l = 0, 1, . . . .

wherec > 0 is an absolute constant.

Proof. The first part of the Theorem is already proved in (4.6). Next, the inequality (3.9)
gives

‖(f − sk(f ))‖L2(�)�64�2‖� (f − sk(f )) ‖L2(�),

and then the inequality (3.6) withS = �,m = 2, r = 1, n = 2l , l = 0, 1, . . . , implies for
an absolute constantc > 0

‖� (f − sk(f )) ‖L2(�)�
(
c�2

)n ‖�n+1
(f − sk(f )) ‖L2(�),

n = 2l , l = 0, 1, . . . .

From this we obtain

sup
x∈�

|(f (x) − sk(f )(x))|�
(
c�2

)n ‖�n+1
(f − sk(f )) ‖L2(�),

n = 2l , l = 0, 1, . . . .

Assuming thatk = n + 1 and using the minimization property of spliness2k(f ) we arrive
to

sup
x∈�

|f (x) − sk(f )(x)|�
(
c�2

)k−1 ‖�kf ‖L2(�),

k = 2l + 1, l = 0, 1, . . . . �

The Theorem 4.3 implies the following result for all functions that belong to the space
E�(�) which is the linear span of eigenfunctions whose eigenvalues are not greater than
�.

Theorem 4.4. There exists a constantc > 0 such that if

� < (c�)−1/2, (4.7)

then
(1) every functionf ∈ E�(�) is uniquely determined by the set of numbers{f (xj )}

where{xj } is any(�,�)-lattice on�;
(2) every functionf ∈ E�(�) can be reconstructed as a limit whenl → ∞ of the

interpolating spline functionss2l (f )

‖f − sk(f )‖L2(�)��k‖f ‖L2(�), l ∈ N, k = 2l , l = 0, 1, . . . ,
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and respectively,

sup
x∈�

|f (x) − sk(f )(x)|���k−1‖f ‖L2(�), k = 2l + 1, l = 0, 1, . . . ,

where� = c�2� < 1.

Proof. Since forf ∈ E�(�) we have the inequality

‖�kf ‖L2(�)��k‖f ‖L2(�),

the Theorem 4.3 gives

‖f − sk(f )‖L2(�)�
(
c�2�

)k ‖f ‖L2(�), k = 2l , l = 0, 1, . . . , (4.8)

and

sup
x∈�

|f (x) − sk(f )(x)|��
(
c�2�

)k−1 ‖f ‖L2(�),

k = 2l + 1, l = 0, 1, . . . . (4.9)

Take a functionf ∈ E�(�) for which f (xj ) = 0 for all xj ∈ X�,�. For such function
the interpolating splinesk(f ) is identically zero and by (4.8)

‖f ‖L2(�)�
(
c�2�

)k ‖f ‖L2(�), k = 2l , l = 0, 1, . . . .

Since, according to (4.7),c�2� < 1, the last inequality proves the uniqueness part of the
Theorem. For the same reason the second part is a consequence of (4.7) and (4.8).�

At the end of this section we will mention another extremal property of splines. In the
case of the straight line this property is attributed to Golomb and Weinberger[7].

The notationQ(X�,�, f, k, Bk) will be used for the collection of functions from the
Sobolev spaceH 2k(�) that take on the setX�,� the same values as the given functionf and
satisfy the inequality‖(1 + �)kf ‖�Bk.

Recall, that a symmetry center of a convex setM in a linear spaceE is a pointx0 ∈ M

such that for any vectorv ∈ E the inclusion

x0 + v ∈ M

implies the inclusion

x0 − v ∈ M.

Lemma 4.5. The functionsk = sk(f ) is the symmetry center of the convex,closed and
bounded setQ(X�,�, f, k, Bk) for anyBk > 0 for which this set is not empty.

Proof. We will show that if

sk(f ) + h ∈ Q(X�,�, f, k, Bk)
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for some functionh from the Sobolev spaceH 2k(�) then the functionsk(f ) − h is also in
Q(X�,�, f, k, Bk). Indeed the last assumption shows thath is zero on the setX�,� and then∫

�
(1 + �)ksk(1 + �)kh dx = 0.

But then

‖(1 + �)k(sk(f ) + h)‖ = ‖(1 + �)k(sk(f ) − h)‖.
In other words,

‖(1 + �)k(sk(f ) − h)‖�Bk

and becausesk(f )+ h andsk(f )− h take the same values onX�,� the functionsk(f )− h

belongs to the setQ(X�,�, f, k, Bk). �

Note that the setQ(X�,�, f, k, Bk) is not empty if and only if

Bk �‖sk(f )‖H2k(�), (4.10)

wheresk(f ) is the interpolating spline forf, and in the case of equality in (4.10) the set
Q(X�,�, f, k, Bk) contains only the functionsk(f ).

5. Approximations of eigenvalues

Let 0 < �1��2� · · · ��j be the sequence of the firstj eigenvalues of the operator�
in L2(�) counted with their multiplicities and�1,�2, . . . ,�j be the corresponding set of
orthonormal eigenfunctions.

For a fixedj ∈ N, and ak > j we introduce the number�(k)
j (X�,�) by the formula

�(k)
j (X�,�) = inf F⊂Sk(X�,�)

supf∈F
‖�1/2f ‖2

‖f ‖2 , f �= 0, (5.1)

whereinf is taken over allj -dimensional subspaces ofSk(X�,�) ⊂ H 2k(�).

Theorem 5.1. There exists an absolute constantc > 0 such that for any given� > 0 if
0 < � < (c�)−1/2 then for every�-admissible setX�,�, every eigenvalue�j �� and all
k = 2l + 1, l = 0, 1, . . . ,

�(k)
j (X�,�) − �2�2(k−1)��j ��(k)

j (X�,�), (5.2)

where� = c�2� < 1.

Proof. Let P k
X�,�

be the projector fromH 2(�) onto the spaceSk(X�,�) defined by the

formulaP k
X�,�

f = sk(f ). Note that the functionsk(f ) depends on the setX�,�.



218 I. Pesenson / Journal of Approximation Theory 135 (2005) 203–220

For a given� > 0 let 0< �1��2� · · · ��j (�)�� be the set of all eigenvalues counted
with their multiplicities which are not greater than�. If �1,�2, . . . ,�j (�) is the set of
corresponding orthonormal eigenfunctions then their linear span is denoted byE�. Note,
thatdimE�i

= i. If � ∈ [�j (�), �j (�)+1) thenE� = E�j (�)
anddimE� = dimE�j (�)

=
j (�).

According to the Theorem 4.4 for any�i such that the corresponding�i �� we have

‖sk(�i ) − �i‖��(c�2�)k−1, sk(�i ) ∈ Sk(X�,�), k = 2l + 1, l = 0, 1, . . .

The right-hand side in the last inequality goes to zero for 0< � < (c�)−1/2 and largek.
Thus, the dimension ofP k

X�,�
(E�) is j (�) as long as 0< � < (c�)−1/2 andk is large

enough. Next, according to the min-max principle the eigenvalue�j of � can be defined by
the formula[4,5,8]

�j = infF⊂L2(�)supf∈F
‖�1/2f ‖2

‖f ‖2 , f �= 0,

whereinf is taken over allj -dimensional subspaces ofL2(�).
It is clear that

�j ��(k)
j (X�,�)�supf∈P k

X�,�
(E�j )

‖�1/2f ‖2

‖f ‖2 , f �= 0,

where�(k)
j is defined by (5.1),�j ��, 0 < � < (c�)−1/2 andk is large enough.

For any	 ∈ E�j
, sethk = sk(	) − 	, and

hk = hk,j + h⊥
k,j ,

wherehk,j ∈ E�j
, h⊥

k,j ∈ E⊥
�j

.
It gives

�1/2hk = �1/2hk,j + �1/2h⊥
k,j .

Since� is self adjoint andE�j
is its invariant subspace the terms on the right are orthogonal

and we obtain

‖�1/2h⊥
k,j‖�‖�1/2hk‖.

It is clear that the orthogonal projection ofsk(	) ontoE�j
is 	 + hk,j = 	k,j . Since

sk(	) = 	k,j + h⊥
k,j , we have

‖sk(	)‖2�‖	k,j‖2

and we also have

‖�1/2sk(	)‖2 = ‖�1/2	k,j‖2 + ‖�1/2h⊥
k,j‖2.

After all we obtain the following inequality

‖�1/2sk(	)‖2

‖sk(	)‖2 �
‖�1/2	k,j‖2

‖	k,j‖2 + ‖�1/2h⊥
k,j‖2

‖sk(	)‖2 .
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The last inequality gives

‖�1/2sk(	)‖2

‖sk(	)‖2 ��j + ‖�1/2hk‖2

‖sk(	)‖2 .

In what follows we will use the notation

h
(i)
k = h

(i)
k (X�,�) = sk(�i ) − �i ,

where�i is theith orthonormal eigenfunction.
According to the Theorem 4.4,‖h(i)

k (X�,�)‖ can be done arbitrarily small for largek if
corresponding eigenvalue�i �� and 0< � < (c�)−1/2 because

‖h(i)
k (X�,�)‖��(c�2�)k−1, k = 2l + 1, l = 0, 1, . . . .

Assume that 0< � < (c�)−1/2 andk is so large that

j (�)∑
i=1

‖h(i)
k (X�,�)‖2�1/2

wherej (�) is the number of all eigenvalues (counting with their multiplicities) which are
not greater than�.

Using the fact that�1/2 is a self adjoint operator one can show that

‖�1/2hk‖�‖	‖

j (�)∑

i=1

‖�1/2h
(i)
k ‖2




1/2

,

wherehk = sk(	) − 	.
The last inequality imply

�(k)
j (X�,�) − �j �sup	∈E�j

‖�1/2sk(	)‖2

‖sk(	)‖2 − �j

�sup	∈E�j

‖�1/2hk‖2

‖sk(	)‖2 �sup	∈E�j

‖	‖2∑j (�)
i=1 ‖�1/2h

(i)
k ‖2

‖sk(	)‖2 .

Since

‖sk(	)‖2�
(‖	‖ − ‖hk‖

)2 � 1
4‖	‖2,

we obtain

�(k)
j (X�,�) − �j �4

j (�)∑
i=1

‖�1/2h
(i)
k (X�,�)‖2.

Because the Sobolev spaceHs(�) is continuously embedded into the spaceHt(�) if
s > t , we have

‖�1/2h
(i)
k (X�,�)‖2��2

(
c�2�

)2(k−1) ‖h(i)
k (X�,�)‖2��2

(
c�2�

)2(k−1)
.
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After all we obtain

�j ��(k)
j (X�,�)��j + �2

(
c�2�

)2(k−1)
, k = 2l + 1, l = 0, 1, . . . .

where�j ��, 0 < � < (c�)−1/2 andk is large enough.
Theorem 5.1 is proved.�
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