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Abstract

Anotion of splinesisintroduced on a quantum grapkt is shown that eigen values of a Hamiltonian
on afinite grapi” can be determined as limits of eigenvalues of certain finite-dimensional operators in
spaces of polynomial splines dh In particular, a bounded set of eigenvalues can be determined using
a space of such polynomial splines with a fixed set of singularities. It is also shown that corresponding
eigenfunctions can be reconstructed as uniform limits of the same polynomial splines with appropriate
fixed set of singularities.
© 2005 Published by Elsevier Inc.

MSC:primary 05C99; 41A15; secondary 47E05

Keywords:Quantum graphs; Polynomial splines; Rayleigh—Ritz method; Plancherel-Polya inequalities

1. Introduction

In 1943 Courant [4] suggested to use piecewise linear functions to define the subspaces
of approximate trial functions for the Rayleigh—Ritz method for Sturm-Liouville boundary
value problems. This idea was later developed in [1,2,5,19].

The goal of our article is to develop the same approach for second-order Hamiltonians
on quantum graphs. Our generalization goes along the following lines.
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(1) Using a self-adjoint Hamiltonian on a quantum grapéind a set of nodes; € I" we
introduce the notion of variational splines dn Since we consider a Hamiltonian which
acts on each edge as a second derivative we obtain piecewise polynomial functions.

(2) We show that eigenfunctions whose eigenvalues are not greater than a fixed number
 can be reconstructed as uniform limits of polynomial splines for approgneteset of
nodes.

(3) We show that a bounded set of eigenvalues can be determined using a space of
polynomial splines with a fixed set of nodes.

Quantum graphs found numerous applications in physics, chemistry, engineering and
quantum computing. They serve as models in many situations when one deals with waves
that propagate in “thin” media. Many results and references on the analysis on quantum
graphs can be found {6,9-13,17,18]. In particular in [18] Solomyak considered approx-
imations by piecewise constant functions §glines of order zero) on metric trees with
applications to embedding theorems.

By a quantum graph we understand (see [12]) a dair\), wherel” is a metric graph
andA is a Hamiltonian ord”, which acts on each edge as the second derivative and whose
domain is described in terms of the Neumann(Kirchhoff) compatibility conditions at ver-
tices, which link the edges together. The general theory of Hamiltonians on quantum graphs
was developed by Kostrykin and Schrader [10]. Many basic notions and results concerning
quantum graphs and their spectra were summarized by Kuchment in [12].

A metric graphI' is a set of vertice¥ = {v;} and edgesE = {¢;} each of length
lei| € (0, oo]. We identify every edge with a segment0, |e|] of R! and use coordinate,
along it. We consider graphs with finite number of edges of finite length. Grragdm be
equipped with a natural metric and the Lebesgue meaburéhe spacé.»(I') is defined
as the direct sum of spacés(e), e € E, with the scalar product

o) =2 [ redr. fgetam (LD

ecE

and the norm

£z, =< |f| dX) : 1.2)

We introduce a self-adjoint operatar(a Hamiltonian) in the spade>(I") which acts on
each edge as the negative second derivative. The precise definition of this operator is given
in the Definition 2. We also give (followinfLl2]) the description of this operator in terms
of its quadratic form.
Using the Hamiltoniar we introduce the Sobolev spa##* (I'), k € N, as the domain
of thekth power of the self-adjoint operatdrwith the graph norm

Z/ (lfl + ) }1/2. (13)

ecE
This definition depends on our particular operator and in gefle2hbn a quantum graph
there is no a natural definition of Sobolev spaces of order higher than one.

Zkf

d2k

I/ g2y = {
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We will use the notatio® (I') for the linear span of all eigenfunctions of the Hamiltonian
A whose corresponding eigenvalues are not greater than a pesitiis clear that for any
functionf from this setE“ (I') the following Bernstein inequality holds true

k
IA* Fll L <O FllLom)s

foranyk € N.

Definition 1. Given two numbers

0 <a< < min |el,
eeFE

we say that a sdt, ; of open and pairwise disjoint intervalgis an admissibléx, $)-cover
of T'if:
(1) for everyj

a< || < B

(2) the union of open interval§ does not contain vertices &F,
(3) closures of the interval cover the graphi'.

An (o, p)-lattice X, 4 is a set of pointgx;} where everyr; belongs to an open interval
1; from an admissibléx, §)-coverl, .

Note that the second condition implies that every intefydlelongs to the interior of an
edge.

The Theorem 3.5 says that there are two absolute congtants0, C> > 0, such that for
any («, f)-lattice X, 4 the following inequality holds true for ak = 2.1=01,....f€
H2m (1")

1/2
1oy <ComB2 [ S 1£Cn | +Ca (862) " IA™ Fllym. (14)
J

Using this inequality one can show that the norm of the Sobolev speeeT’), is
equivalent to the norm

1/2

Z FEDP+IA" FI, 0 (1.5)
J

Givenan(a, f)-lattice X, 3 = {x;}, and asequence of complex numbiers we consider
the following variational problem:

Find a functiorw from the spacé??*(I'), k € N, which has the following properties:
(1) wix)) =uj,
(2) wminimizes functional

w — |A*w]. (1.6)
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We show that this problem has a unique solution.

For a fixed(a, f)-lattice X, 4 the set of all solutions of the corresponding variational
problem for different sequences will be denotedSé(aXa’ﬁ). The elements of the space
S¥ (X, p) are called splines.

For an(o,, f§)-lattice X, 4z and a functionf H?(), k € N, the solution of the above
variational problem that interpolatésn the setX,, s will be denoted by (f). In fact, the
functions (f) € S"(Xa,/;) depends on the sét, 4, but we hope our notation will not cause
any confusion.

A Lagrangian spIineLf € Sk(X%ﬁ) is a minimizer of (1.6) such that

Lf()”):é,'j, XjeXM;.

We prove that a functiom € H(I') is a solution to the Variational Problem if and only
if
(1) wix)) =uj,
(2) wis orthogonal with respect to the inner product

(A f, A ) Ly + ) fx)glx)) (L.7)

J

to the subspace of all functiofigrom the space?? (I") for which f(x;) = 0forallj.
We introduce notation

Io=T\V,

whereVis the set of vertices df. It is clear that the sdfo \ X, 4 is a union of open disjoint
intervalsJ;:

To\ Xy 5= U Jj. (1.8)
J

Itis also shown (Corollary 4.1) that every solution to the Variational Problem is a polynomial
of degree< 4k on every open interval;.

As it was already mentioned, Solomyak considereld 8) approximations by piecewise
constant functions (=splines of order zero) on metric trees. In his situation with piece-
wise functions the question about the conditions at vertices did not arise and in this sense
piecewise functions reflect a graph structure in a very weak form.

In our case of splines of higher degree the conditions at vertices are involved in a much
stronger form. Indeed, even the fact that a spline belongs to a certainEpade) implies
in particular the following: (1) the spline hds derivatives up to the ordek4n each edge;

(2) the spline itself and all its even derivatives up to the order£ are continuous oh;;
(3) all its odd derivatives satisfy Neumann(Kirchhoff) conditions.

In the Theorem 4.4 we show that every function from the spa€el’) is a limit of
polynomial splines. Namely, there exists an absolute constantO such that for every
(o, p)-lattice X, g = {x;} with

B < (co)™2,



I. Pesenson / Journal of Approximation Theory 135 (2005) 203—-220 207

the following holds true
(1) every functionf € E“(I') is uniquely determined by the set of numbgrgx;)};
(2) every such functiohcan be reconstructed as a limit wher> oo of the interpolating
spline functions ( f)

!
If —sa (OIS IfIl, 1=0,1,...,

and

2\t I
SUp|f () — su(HI<w (cFo) TIfl k=241 1=01....,

xel

wherey = cfPw < 1.

Let 0 < /1<42< --- <4, be the sequence of the fifseigenvalues of the operatdr
in Lo(I") counted with their multiplicities ang,, @5, ..., ¢; is the corresponding set of
orthonormal eigenfunctions.

For a fixedj € N, and ak > j we introduce the numbehi,k)(Xa,ﬁ) by the formula

) Al/z 2
i(/k)(Xa,ﬁ) = inf sup %
: Fcsk(X.p fer ISl

f#0, (1.9)

where inf is taken over ajtdimensional subspacé&sof Sk(Xa’,;) c H*D).
As a consequence of the min-max principle we obtain that the nurﬁf}f‘é(iu,ﬁ) are
the eigenvalues of the matrid® = D® (X, p) with entries

) = / (ALbLtdx (1.10)

Now we can formulate our main result which shows that eigenvalues of mamiées
approximate eigenvalues of the HamiltoniAnoperator and the rate of convergence is
exponential.

Namely, the Theorem 5.1 says that there exists an absolt@ such that for any given
w > 0if0 < B < (cw) Y then for everyo, p)-lattice X, 5, every eigenvalué; < and
alk=2"+1,1=0,1,...,

A, - PN <1y <A ), @)

wherey = cfPw < 1.
The inequality (1.11) shows that there are three different ways to determine eigenvalues
Aj.
(1) Eigenvalues from the intervid, w] can be determined by keeping a latticg s with
0 < f < (cw)~1/2fixed and by lettingk go to infinity.
(2) By letting 5 go to zero and keepingfixed one can determine all of the eigenvalues.
(3) The convergence will be even fastefifjoes to zero and at the same tikngoes to
infinity.
The similar results in the case of compact Riemannian manifolds were publisii€dl.in
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2. Quantum graphs

As we already said we consider a quantum graph which is a pair of a metric Grapth
a self-adjoint operatoA on it. We assume that the graph has finite number of edges and
every edge has a finite length.

GraphI" can be equipped with a natural metric and the Lebesgue medsared we
consider the corresponding spdcg(I") as in (1.2).

The Sobolev spacH 1(T") consists of all continuous functions dtthat belong taH 1 (e)
on every edge and we will always use the following norms

i P 1/2
I f e = (/ (|f|2 + ‘E )dx) , (2.1)
) 1/2
)dx) . 2.2)

The continuity assumption means that for every vegtend any two edges, 2 con-
tainingv the following boundary condition holds true

im_ )= _lim_ f0)=f. (2.3)

X—v,x€eq

and

> <|f|2+‘g

ecE

I Al a2y = (

There are many ways to introduce a self-adjoint operatdr @rhich is called a Hamil-
tonian. The following definition gives a precise description of the operator we are dealing
with.

Definition 2. The HamiltoniamA is defined by the formula

d2
_ L 2.4
132 (2.4)
on each edge € E and its domairD(A) consists of all function§from Lo(I") such that
(1) f belongs to the Sobolev spa&€(e) on each edge € I', (2) f is continuous o, (3)
at every vertex of degreed every f € D(A) satisfies the so called Neumann (Kirchhoff)
conditions

d
3 a7 (v) = 0, (2.5)
dx
eckEy,
wherekE, is the set of all edges containingas a vertex and the derivatives are taken in the

directions away from the vertex.

The operato is a self-adjoint positive definite operator and we introduce the scale of
Sobolev space&?(I') associated with the Hamiltoniak as the domains of the powers
A* with the graph norm (1.3).
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The operatorA can also be described in terms of its quadratic form. Namely, consider
the positive definite quadratic form which is given as

>,

ecE

df |?
dx

and whose domain i 1(I"). The simple inequality

2

df

2
) ’ fELZ(Ovl)a O<8<1,
dx

2
1£(0)]< (;nfnim +e

L2(0,1)

implies that our quadratic form is closed. According to the general theory of quadratic
forms[3], every closed positive definite quadratic form generates a unique positive definite
self-adjoint operator. In our case this operator is exactly the Hamiltohidefined in the
Definition 2. It follows from a general result in [10,12].

In the case of a finite graph' the spectrum of the HamiltoniaA is discrete, non-
negative and goes to infinity. We will use the notatibff(I") for the linear span of all
eigenfunctions of the Hamiltoniakwhose corresponding eigenvalues are not greater than a
positivew.

3. Poincare-type inequalities onl"
The following two lemmas can be easily proved by using elementary calculus.

Lemma 3.1. For any interval7; such that|/;| <f and for anyx; € I; the following
inequality holds true

(3.1)

d
If = FGD oy <P H%

La(1)
forany f € H(I)).

Lemma 3.2. For any («, f)-lattice X,, s = {x;} there exists a constait(«, f) such that
forany f € HY(IN), the following inequality holds

1/2

STIFapP| < B llayr- (3.2)
J

The inequality which is given in the next Theorem can be called the global Poincare
inequality onI".
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Theorem 3.3. There exists an absolute constant C such that for@ny)-lattice X, 5 =
{x;} the following inequality holds true

1/2
1l <C B2 D IFepP ]+ BIAY FllLym ¢ - (3.3)
J

forall f € HY(I).

Proof. To prove this Theorem itis enough to use the inequalities (3.1), (3.2) and to observe
(se€[3]) that since the positive closed quadratic form

>/ Ja

ecE

2
dx

with the domain consisting of all functions frofi(I") generates the self-adjoint operator
A, the domain of the positive square rabt’? is exactly the domain of the corresponding
form (see als$10,12]) and

IAYZ 512 = Z/
ecE"Y ¢

Although the proof of the following Lemma was already given in our previous papers
(for example in14,15]), we include it for completeness.

d 2
—f dx. OJ
dx

Lemma 3.4. If S is a self-adjoint operator in a Hilbert space and for some f from the
domain of S

IfI<A+alSfl, a>0
thenforallm =2,1=0,1,2,...
Il <mA 48" La™ || " f||

as long as f belongs to the domaingf.
Moreover, ifA = 0then for any nonnegative r and evety= 21 >r,[; = 0, 1, .. .there
exists a positive constahtr, m) such that for alln = 22 1,=0,1,2, ...,

IS” FIIS (b(r, mya™ ="y §Hn=n+ g (3.4)

as long as f belongs to the domainsf” ="+,

Proof. Because operat@is self-adjoint we have the following Laplace transform repre-
sentations for the resolventsi&and—i §

(I —iS)~tf = foo exp(—At) exp(itS) f dt,
0
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u1+my?f=/memp%an—m9fm,
0

forany/ > 0. Itimplies for anye > 0
I +ies)7HI<1
and the same for the operatdr— ieS). Then
A< +eS)fl
and the same for the operatd@r— ¢S5). It gives
ST = eS)FIl+ IFINIT + 2D FIl + I FI<2NS2F 1+ 2 £ 1.

Thus for every self-adjoint operatS8we have the following inequality for arfyffrom the
domain ofs?

ISFI<ellS*fIl +2/el 1, &> 0. (3.5)

Now, our inequality (2.20) is true fon = 1. If itis true formthen applying (2.22) to the
self-adjoint operato§™ we obtain

I£II<mA + 8" La™ (e S2" £ + 2/¢ ) f )
Settings = 8”~1(a)™22, we obtain
Il <2mA + 87" L(@)® || 52" f].

So the first part of the lemma is proved.
In particular the last inequality implies for = 0

IFII<@ay"[IS™fIl. m=2", 1=0,1,.... (3.6)
Next, since
18" FII< e, H)IS™ £I7™ | FIF/™, 0<r<m
we have
IS" fll <clm, r)@Ba)y" " |IS" fI, m=2, 1=01,..., 0<r<m.
Forg = S" f it gives
lgll<cOm,r)Bay" " |IS" "¢l
and then by (3.6)
lgll < bGm, rya™ "y |[S"" Vgl m =2, n=2"2
where constarth is of the form
b(m,r) = c(m, r)8" "1,
In other words with the sameas above we have

IS" FI<Ba™ "y |S"" =D fll, m=2" n=22 11,1b=0,1,.... O
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Theorem 3.5. There are two absolute constanfy > 0, C, > 0, such that for any
(o, p)-lattice X, 4 the following inequality holds true for alh = 2,1=01,...,f €
H2m(1'*)

1/2
I lLary < Cim B2 (Z |f<xj>|2) +C2 (86%) 1A" fllLyar. (3.7)
J

In particular, the norm of the Sobolev spae” (I'), m = 2/,1 =0, 1, ... ., is equivalent

to the norm

1/2
(Z |f(x,»)|2) + 1A £112 - (3.8)
J

Proof. An application of the Theorem 3.3 along with the Lemma 3.4 gives that there are
C1 > 0, c2 > 0, such that the following inequality holds true

1/2
1/ 1|y < C1B2 (Z |f(x,»)|2) + 2B A S Loy (3.9)
J

wheref € H2(I'). Another application of the Lemma 3.4 gives that there exists a constant
C» > O such that forany: = 2,1 = 0, 1, ... the following inequality holds

1/2
£l 2o < Cam B2 (Z |f<xj>|2) + C28B) 7" |A™ £l Lo (3.10)
J

Thus the first part of the Theorem is proved.
If we will add the term||A™ | ., to each side of the last inequality we will have for a
constantC > 0

1/2
ILf Il 2m(ry <C (Z|f<x,->|2) + A" fllLyr ¢ - (3.11)
J

The second part of the Theorem is a consequence of this inequality, the Lemma 3.2, and the
interpolation  inequality for  self-adjoint  operators. The Theorem s
proved. [J

4. Polynomial splines

Let us recall that the spadé® (I'), k € N, is defined as the domain of the Hamiltonian
A% with the graph norm (1.3). Given a, f§)-lattice X, 3 = {x;} and a sequence of
complex numbers = {u;}, we consider the following variational problem.
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Variational problem Find a functionw from the space??(I'), k € N, which has the
following properties:

(1) wix;) = uy,
(2) w minimizes functional

w — [|A*w]| ). (4.1)

It is clear that for a fixed sequense= {u;} the minimum of the functional (4.1) is the
same as the minimum of the functional
1/2

w— [ Y P+ 1A W m.
J

and according to the Theorem 3.5 this last expression is equivalent to the Sobolev norm of
w.
We show that this Variational Problem has a unique solution.

Theorem 4.1. The Variational Problem has a unique solution for any sequence of values
u = {u;} and anyk € N.

Proof. Bythe Theorem 3.5 forany., f)-latticeX, 3 = {x;} the graph norm of the Sobolev
spaceH % (I") is equivalent to the norm

1/2

IA AT, + D IF@pIP] (4.2)
J

Consider the sat9, ¢ H#(I'), k € N, of all functions from# 2 (I') such thatf (x;) =
0 for everyj and for the given sequenae= {u;} introduce an affine subspace

Uy (), keN,

of all functionsf from H%(I') such thatf (x;) = u;.

Itis clear that on this affine subspace the minimum of the functional (4.1) is the same as
the minimum of the functional (4.2) which is equivalent to the norm. It gives the following
solution to the Variational Problem. Take a functigin Uz (1) and let the functiorh be
its orthogonal projection on the spaﬂék with respect to the inner product

(A f, Akg)Lz(r) + Z fxj)glx;). 4.3)

J

Then the functiorw = g — & is the unique solution to the Variational Probleni.]

For a fixed(«, f)-lattice X, 4 the set of all solutions of the corresponding variational
problem for different sequences will be denoted&‘ésxa,[;). The elements of the space
Sk(X,p) are called splines.

The proof of the Theorem 4.1 implies the following result.
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Theorem 4.2. Afunctionw € H%(T') is a solution to the Variational Problem if and only if
itis orthogonal with respect to the inner prodydt3)to the subspacé'gk andw(x;) =u;.

The Theorem 4.2 has important consequences. Let us use the notation
Io=T\V,

whereV is the set of vertices df. If I; form an admissibléx, f§)-cover of[" and X, 3 =
{xj}, x; € Ijisan(a, f)-lattice thenis clear that the 6§\ X, 4 is a union of open disjoint
intervalsJ;:

To\ X, 5= J;- (4.4)
J

Corollary 4.1. Every solution to the Variational Problem is a polynomial of degteék
on every open interval; from (4.4).

The proof is obvious.

Another consequence of the Theorem 4.2 is the fact that the set of all solutions of The
Variational Problem (with a fixe& and fixed set of nodes) is linear. In particular, every
solutionw of 1)-2) can be written as a linear combination

w:Zule;, (4.5)
J

whereL* e $*(X, g) C H*(I), are Lagrangian splines.

Our next goal is to prove an Approximation Theorem. For a given fungtienH % (I")
the corresponding interpolating spline is

s(f) =) fxpLY,
J

whereL’j‘. is a Lagrangian spline. The functiep( f) interpolatesf in the sense that for all
J

fxj) =s(f)x)).
By the inequality (3.7) we have
1F = sk iary < (8452) " IA™ (f = sk (P gy, m=2.1=0,1,...,

wheref € HZ(T'), k >2m.
If K = m, then by using the minimization property of splines we obtain

2N\K ok !
If = k()L < (64ﬁ ) IA® fllL,ay, k=2, 1=0.1,.... (4.6)

Thus, we have the following approximation result.
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Theorem 4.3. Forany f € H? (I'),1=0,1, ..., the following inequality holds true
1 = sk o) OB IA fll Ly, k=2, 1=01,....

Moreover,we have the following estimates in the uniform norm on the graph

k=1
SUpI(f(¥) = s (NI () IA Fllpary,

xel

k=2'+1, 1=0,1,....

wherec > 0is an absolute constant.

Proof. The first part of the Theorem is already proved in (4.6). Next, the inequality (3.9)
gives
IS = skc(PD Lo <BABZA (f — sk (f) Il LoD,
and then the inequality (3.6) with=A,m =2,r =1,n=2/,1 =0, 1, ..., implies for
an absolute constant> 0
IACf = sk()) I < (Cﬁz) IA™(f = sk () o),
n=2,1=01,....

From this we obtain

SUpI(f () = sk(NENIS (ef2) 1A (f = 5 laary,

xell

n=2,1=0,1,....

Assuming thak = n + 1 and using the minimization property of splines(f) we arrive
to

k=1
supl £ (1) = sk (NI (ef?) 1A Flliyary,

xel

k=2'+1,1=0,1,.... O

The Theorem 4.3 implies the following result for all functions that belong to the space
E®(T") which is the linear span of eigenfunctions whose eigenvalues are not greater than
.

Theorem 4.4. There exists a constant> 0 such that if
B < (cw) 2, (4.7)

then

(1) every functionf e E®(I') is uniquely determined by the set of numbfgfgx;)}
where{x;} is any(a, f)-lattice onT’;

(2) every functionf € E®(I') can be reconstructed as a limit whén— oo of the
interpolating spline functionsy ( /)

If = skl <Y fll,ay, [eN, k=2, 1=0,1,...,
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and respectively,

suplf (x) — sk (<Y M fllpamy, k=241, 1=0,1,...,

xell

wherey = cf%w < 1.

Proof. Since forf € E“(I') we have the inequality

A £ Loy <O Fll Ly

the Theorem 4.3 gives

k
1S = st Dlam < (F0) 1 £y, k=2, 1=0.1,..., (4.8)
and

2 k=1
suplf (1) — sk (NI <0 (eB) 111,

xel
k=2 +1, 1=0,1,.... (4.9)
Take a functionf € E“(T') for which f(x;) = 0 for all x; € X, g. For such function
the interpolating spling, () is identically zero and by (4.8)

k
1/l < (eB20) 1, k=2, 1=01,....

Since, according to (4.7),82co < 1, the last inequality proves the uniqueness part of the
Theorem. For the same reason the second part is a consequence of (4.7) and (4.8).

At the end of this section we will mention another extremal property of splines. In the
case of the straight line this property is attributed to Golomb and Weinbgther

The notationQ (X, g, f, k, Bx) will be used for the collection of functions from the
Sobolev spacél % (I") that take on the seX,, 5 the same values as the given functf@nd
satisfy the inequality| (1 + A)* £|| < By.

Recall, that a symmetry center of a convexdehn a linear spac€ is a pointxg € M
such that for any vectar € £ the inclusion

xo+veM
implies the inclusion

xXg—veEM.

Lemma 4.5. The functions; = s¢(f) is the symmetry center of the convelgsed and
bounded seQ (X, s, f. k, By) for any By > 0 for which this set is not empty.

Proof. We will show that if

sk(f) +h e O(Xyp, [k, Br)
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for some functiorh from the Sobolev spack % (I) then the function (/) — & is also in
Q(Xy g, fy k, By). Indeed the last assumption shows thét zero on the seX,, ; and then

/ 1+ Afsi(1+ Afndx = 0.
r

But then

1L+ A (e (f) + Bl = A+ A (s () = Wl
In other words,

1L+ A (e (f) = W < Bi

and because(f) + h andsi (f) — h take the same values o, ; the functions; (f) — &
belongs to the se@ (X, g, f, k, By). U

Note that the se@ (X, g, f. k, By) is not empty if and only if

By 2 lsk (O ey (4.10)

wheres; (f) is the interpolating spline fof, and in the case of equality in (4.10) the set
Q(Xy g, f, k, Bx) contains only the functiosy (f).

5. Approximations of eigenvalues

Let 0 < 21</2< - -+ <4, be the sequence of the fifjstigenvalues of the operatdr
in Lo(I') counted with their multiplicities ang, @5, ..., ¢; be the corresponding set of
orthonormal eigenfunctions.

For afixedj € N, and ak > j we introduce the numbebﬁ.k)(xa’ﬁ) by the formula

ALY f )2
IF1z

whereinf is taken over allj-dimensional subspaces@/f(X“,/;) c H&(T).

i;k)(Xa,[i) =inf rsi(x, ) SUPrer f#0, (5.1)

Theorem 5.1. There exists an absolute constant- 0 such that for any givem > 0 if
0 < B < (cw)~/? then for everys-admissible seX, g, every eigenvalug; <o and all

k=2'+1,1=0,1,...,
AP X p) = 024D <y <GP (X s (-2)
wherey = cf%w < 1.

Proof. Let P,’§M be the projector fromH2(I") onto the spaceS"(Xa, p) defined by the
formuIaP§“ﬂf = sk (f). Note that the functios, () depends on the sét, g.
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Foragiverm > 0let0< A1 <Ao< -+ - <4j(w) < be the set of all eigenvalues counted
with their multiplicities which are not greater tham If ¢4, @5, ..., @}, is the set of
corresponding orthonormal eigenfunctions then their linear span is denotég.hbyote,

thatdimE;q. =ilfwe [)vj(w)a /lj(w)+l) thenE,, = E/lj(w) anddimk,, = dimEij(w) =
J (o).

According to the Theorem 4.4 for amy such that the correspondirig< v we have
lse(0)) — il Sw(efPol ™t si(p) € SK(Xpp), k=2+1,1=0,1,...

The right-hand side in the last inequality goes to zero fer § < (cw)~1/2 and largek.

Thus, the dimension 0P§aﬁ(Ew) is j(w) as long as O< f < (cw)~ Y2 andk is large

enough. Next, according to the min-max principle the eigenvaju A can be defined by

the formula[4,5,8]

IAY2 512
Iz

whereinf is taken over allj-dimensional subspaces b(I).
Itis clear that

f#0,

Aj = INfFcLy)SUP feF

® IAY2 £ )12
Aj <A (Xa,/;)<supfep§xﬁ<E,¢j)W’ f#0,

wherei;k) is defined by (5.1)4; <®, 0 < f < (cw)~/? andk is large enough.
For anyy € E),, sethy = sk(Y) —y, and
hi = hy,j + h,f,
wherehy ; € Exj»htj € E)L/
It gives
Al/th = Al/th‘j + Al/zhtj.

SinceA is self adjoint and:"ij is its invariant subspace the terms on the right are orthogonal
and we obtain

IAY g 1| < AR
It is clear that the orthogonal projection gf(y/) onto E), is Y + hij = Y ;. Since
sk(W) = Wy ; + - ;, we have
sk Q12 = 1 112
and we also have
IAYZse (112 = IAY 2, 117 + 11AY 20 112
After all we obtain the following inequality
IAY 252 A2 12 1AY 2 )7
IO S W E T @I
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The last inequality gives

1Al o IAT 2
Isk@I2 = sk @2
In what follows we will use the notation
e =n (Xa.p) = si(0) = @i,
whereg; is theith orthonormal eigenfunction.
According to the Theorem 4.41h,({’)(X%ﬁ)|| can be done arbitrarily small for largeif
corresponding eigenvalue <w and 0< f < (cw)~1/2 because

Ih Xopll <o), k=2'+1, 1=01,....

Assume that O< f§ < (cw)~Y/? andk is so large that

jlo
>l Xy pI2<1/2
i=1

wherej (w) is the number of all eigenvalues (counting with their multiplicities) which are
not greater tham.
Using the fact that/? is a self adjoint operator one can show that

J(@) 1/2

IAY2he <l | 2 1A 2012 )
i=1
whereh; = s () — .
The last inequality imply
IAY 250112

20 (X, ) — A <supyer, A
JOT ST ez
_ 1A i) e I
<sup  —————=<sup .
VEE sk 2 TR s ()12
Since
2
sk 12> (11— Iael)® = 32,
we obtain
. j() '
MOXyp) = 2 <8y 1A (X ).
i=1

Because the Sobolev spagl (I') is continuously embedded into the spag&T’) if
s > t, we have

. 2(k—1) . 2(k—1)
IAY20 (X, pIP <0 (o) I (X pIP<e? (o)
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After all we obtain

2(k—1) ;
) k=241 1=0.1.....

<O X, <2+ o (cﬁzw

where/; <o, 0 < ff < (cw)~/? andk is large enough.
Theorem 5.1 is proved.
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